GLYCIM模式介紹-植物參數

GLYCIM模式最早在1982由Dr. Acock等人建立,經過Dr. V.R. Reddy, Dr. Yakov Pachevsky, Dr. Dennis Timlin 等人測試與修訂,根據Dr. Reddy口述,Ken Boote最早也有參與GLYCIM模式開發,後來依據GLYCIM模式的基礎建立CROPGRO模式,因此CROPCRO與GLYCIM模式有一定的相似度。原本的GLYCIM模式使用Penman monteith進行水平衡模擬、Hyperbolic equation模擬光合作用,該模式相當令人驚豔之處在於能夠反映淹水情境下,根部活性降低、生長速率下降與根瘤死亡,可以從上述的現象探討淹水情境下,大豆的生理變化以及元素平衡,對於最終產量的影響。
Dr. Timlin在20年以前就開始協助GLYCIM模式土壤模型的建立,這幾年重新將GLYCIM模式與2DSOIL結合成為2DGLYCIM,並且使用FvCB取代Hyperbolic equation進行光合作用模擬,可想像是另一個昇級版的大豆模式。目前模式的原始碼仍然是公開的,只要有興趣的人都可以在Github上找到GLYCIM,Dr. Reddy的團隊一直歡迎大家取用模式,這個氣度永遠是我無法企及的。
GLYCIM模式所需的作物參數檔下表,可以看到參數檔當中有相當大的部分用來模擬作物的發育,模式的時步(time step)是小時,在這個模式既可以觀察到Dr. Acock盡量使用生長/發育速率的取代累積溫度,很大的程度影響到MAIZSIM模式。GLYCIM模式假設的基礎溫度是0℃,並無optimum temperature,值得觀察高溫環境下是否能使用beta function來取代現行的linear equation。
代碼 Definition 定義 備註
MG maturity group number (group 00 = 1) 成熟群
SEEDLB number of seeds per pound weight typical for cultivar 每磅籽粒數 Sink
FILL Seed fill rate mg seed day-1 (24oC) 24oC大豆充實速率 (mg seed-1day-1) Sink
DET Determinancy of cultivar 有限生長/無限生長
PARM1 correction to Pennman equation (usually 1.0) Pennman equation係數
PARM2 slope of the dependence of VSTAGE on temperature integral, dday-1 主幹節數增加的速率(1/積溫) Development
PARM3 maximum VSTAGE 主幹最大節數 Development
PARM4 correction factor for the early V rate to account for clay content Development
PARM5 Progress rate towards R0 at solstice, day-1 (夏至時173DOY)至R0的生育期變化進程(1/發芽至R0日數) Development
PARM6 daily rate of the progress to R0 before solstice, day-1 (夏至前173DOY)至R0的生育期變化進程(1/發芽至R0日數) Development
PARM7 daily rate of the progress to R0 after solstice, day-1 (夏至後173DOY)至R0的生育期變化進程(1/發芽至R0日數) Development
PARM8 progress rate from R0 towards R2, day-1 R0至R2生育期變化進程(1/日數) Development
PARM9 slope of the dependence of R2end on the JDFRST (emergence date), day-1 Development
PARM10 intercept of the dependence of R2end on the JDFRST (emergence date), day-1 Development
PARM11 progress rate from R2 towards R6, dday-1 R2至R6生育期變化進程(1/積溫) Development
PARM12 length of the plateau R5, dday-1 R5的持續時間 (積溫) Development
PARM13 length of the plateau R6 with no stress, dday-1 沒有逆境下R6的持續時間 (積溫) Development
PARM14 rate of the decay of the R6 plateau as the stress increases, dday-1 逆境影響R6的程度 (積溫) Development
PARM15 rate of the progress towards R7, dday-1 至R7stage進程(1/積溫) Development
PARM16 R stage to stop vegetative growth 葉片停止生長時的R stage Growth
PARM17 Potential elongation / dry weight increase of petioles 葉柄增加長度/葉柄增加重量 Sink
PARM18 Potential rate of the root weight increase 根重增加速率 Sink
PARM19 Increase in pod weight / progress in R stages 豆莢增加重量/每增加一R stage Sink
PARM20 relates increase in seed weight and FILL 豆莢增加重量/每增加一R stage Sink
PARM21 a in relationship between height and V stages “a” in the dependence (h=a*v^b) between height and V stages (株高的參數) Morphology
PARM22 b in relationship between height and V stages “a” in the dependence (h=a*v^b) between height and V stages (株高的參數) Morphology
PARM23 Number of branches / plant density 分支數量/栽植密度 Morphology
PARM24 Stem weight / stem elongation 主幹重量/主幹增加長度 Sink
PARM25 Increment in leaf area / increment in vegetable stages 每一個V stage增加之葉面積 Morphology
參考文獻 1. Reddy, V. Allometric Relationships in Field-grown Soybean. Annals of Botany 1998, 82, 125-131, doi:10.1006/anbo.1998.0650. 2. Haskett, J.D.; Pachepsky, Y.A.; Acock, B. Estimation of soybean yields at county and state levels using GLYCIM: A case study for Iowa. Agronomy Journal 1995, 87, 926-931.

留言